RC3403A

Ground Sensing Quad Operational Amplifier

Features

- Class AB output stage - no crossover distortion
- Output voltage swings to ground in single supply operation
- High slew rate - $1.2 \mathrm{~V} / \mu \mathrm{S}$
- Single or split supply operation
- Wide supply operation -+2.5 V to +36 V or $\pm 1.25 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Pin compatible with LM324 and MC3403
- Low power consumption $-0.8 \mathrm{~mA} / \mathrm{amplifier}$
- Common mode range includes ground
op amp. The ground sensing differential input stage of this op amp provides increased slew rate compared to 741 types.

Pin Assignments

Absolute Maximum Ratings

(beyond which the device may be damaged) ${ }^{1}$

Parameter	Min	Typ	Max	Units
Supply Voltage			+36 or ± 18	V
Input Voltage	-0.3		36	V
Differential Voltage			36	V
PDTA $<50^{\circ} \mathrm{C}$			468	mW
Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65		150	${ }^{\circ} \mathrm{C}$
Junction Temperature			125	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature $(60$ seconds)			300	${ }^{\circ} \mathrm{C}$
For $\mathrm{T}_{\mathrm{A}}>50^{\circ} \mathrm{C}$ Derate at $6.25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$				

Notes:

1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if Operating Conditions are not exceeded.

Operating Conditions

Parameter	Min	Typ	Max	Units	
$\theta \mathrm{JA}$	Thermal resistance		160		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Low Voltage Electrical Characteristics

$+\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=\mathrm{GND}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage			2.0	10	mV
Input Bias Current			-150	-500	nA
Input Offset Current			30	50	nA
Supply Current	$\mathrm{RL}=\infty$ All Amplifiers		2.5	5.0	mA
Large Signal Voltage Gain	$\mathrm{RL} \geq 2 \mathrm{k} \Omega$	20	200		$\mathrm{~V} / \mathrm{mV}$
Output Voltage Swing ${ }^{1}$	$\mathrm{RL} \geq 10 \mathrm{k} \Omega$	3.5			$\mathrm{Vp}-\mathrm{p}$
Channel Separation	$1 \mathrm{kHz} \leq \mathrm{F} \leq 200 \mathrm{kHz}$ (Input referred)		120		dB
Power Supply Rejection Ratio		76			dB

Note:

1. Output will swing to ground.

Electrical Characteristics

$+\mathrm{VS}= \pm 15 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage				10	mV
Input Bias Current				-800	nA
Input Offset Current				200	nA
Large Signal Voltage Gain	$\mathrm{RL} \geq 2 \mathrm{k} \Omega$	15			$\mathrm{~V} / \mathrm{mV}$
Output Voltage Swing	$\mathrm{RL} \geq 2 \mathrm{k} \Omega$	± 10			V

Electrical Characteristics $+\mathrm{VS}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage			2.0	6.0^{1}	mV
Input Bias Current			-150	-500	nA
Input Offset Current			30	50	nA
Input Voltage Range	$\mathrm{RL}=\infty$ On All Op Amps		3.0	5.0^{1}	mA
Supply Current	$\mathrm{RL} \geq 2 \mathrm{k} \Omega$	25^{1}	100		$\mathrm{~V} / \mathrm{mV}$
Large Signal Voltage Gain	$\mathrm{RL} \geq 10 \mathrm{k} \Omega$	± 13	± 14		V
Output Voltage Swing		70	90		dB
Common Mode Rejection Ratio	DC		120		dB
Channel Separation	$\pm 1 \mathrm{kHz}$ to 20 kHz	20	40		mA
Output Source Current	$+\mathrm{VIN}=1 \mathrm{~V},-\mathrm{VIN}=0 \mathrm{~V}$	10	20		mA
Output Sink Current			1.0		MHz
Unity Gain Bandwidth			1.2^{1}		$\mathrm{~V} / \mathrm{uS}$
Slew Rate	$\mathrm{AV}=1,-10 \leq \mathrm{VIN}<+10$		1.0		$\%$
Distortion (Crossover)	$\mathrm{F}=20 \mathrm{kHz}, \mathrm{VoUT}=10 \mathrm{~V}-\mathrm{p}$		40		kHz
Power Bandwidth	$\mathrm{VOUT}=10 \mathrm{~V}$ p-p		80	94	
Power Supply Rejection Ratio		CB			

Note:

1. Significantly improved performance.

Electrical Characteristics Comparison - RC3403A, MC3403, LM324

MAX Ratings	RC3403A			MC3403			LM324			Unit
Supply Voltage	+36 or ± 18			+36 or ± 18			+32 or ± 16			V
Differential Input Voltage	36			36			32			V
Input Voltage	36			36			32			V
Electrical Characteristics	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Unit
Test Conditions		± 15			± 15			+5.0		V
Input Offset Voltage		2.0	6.0		2.0	8.0		2.0	7.0	mV
Input Offset Current		± 30	± 50		± 30	± 50		± 5.0	± 50	nA
Input Bias Current		150	500		200	500		45	500	nA
Input Voltage Range	0		+VS-2	0		+Vs-2	0		+Vs-1.5	V
Supply Current		3.0	5.0		2.8	7.0		0.8	2.0	mA
Large Signal Voltage Gain	25	100		20	200			100		V / mV
Output Voltage Swing	± 13	± 14		± 10	± 13		0		+Vs-1.5	V
Common Mode Rejection Ratio	70	90		70	90			85		dB
Power Supply Rejection Ratio	80	94		76	90			85		dB
Unity Gain Bandwidth		1.0			1.0			1.0		MHz
Slew Rate		1.2			0.6			0.4		V/uS
Output Sink Current	10	20						20		mA
Output Source Current	20	40					20	40		mA
Channel Separation		120			120			120		dB
Distortion (Crossover)		1.0			1.0					\%

Typical Performance Characteristics

Figure 1. Open Loop Gain vs. Frequency

Figure 3. Output Voltage vs. Frequency

Figure 5. Input Bias Current vs. Temperature

Figure 2. Sinewave Response

Figure 4. Output Swing vs Supply Voltage

Figure 6. Input Bias Current vs. Supply Voltage

Typical Applications

Figure 7. Pulse Generator

Figure 8. Function Generator

Figure 9. Ground Referencing a Differential Input Signal

Figure 10. Voltage Reference

Typical Applications (continued)

Figure 11. Voltage Controlled Oscillator

Figure 12. AC Coupled Non-Inverting Amplifier

Figure 13. AC Coupled Inverting Amplifier

Figure 14. Multiple Feedback Bandpass Fllter

Typical Applications (continued)

Figure 15. Comparator with Hysteresis

Figure 16. High Impedance Differential Amplifier

Figure 17. Wein Bridge Oscillator

Typical Applications (continued)

Figure 18. Bi-Quad Filter
Simplified Schematic Diagram (1/4 Shown)

Mechanical Dimensions - 14-Lead Plastic DIP Package

Symbol	Inches		Millimeters		Notes			
	Min.	Max.	Min.	Max.				
A	-	.210	-	5.33				
A1	.015	-	.38	-				
A2	.115	.195	2.93	4.95				
B	.014	.022	.36	.56				
B1	.045	.070	1.14	1.78				
C	.008	.015	.20	.38	4			
D	.725	.795	18.42	20.19	2			
D1	.005	-	.13	-				
E	.300	.325	7.62	8.26				
E1	.240	.280	6.10	7.11	2			
e	.100 BSC	2.54 BSC						
eB	-	.430	-	10.92				
L	.115	.200	2.92	5.08				
N	14				14			5

Notes:

1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
2. "D" and "E1" do not include mold flashing. Mold flash or protrusions shall not exceed .010 inch $(0.25 \mathrm{~mm})$.
3. Terminal numbers are shown for reference only.
4. "C" dimension does not include solder finish thickness.
5. Symbol " N " is the maximum number of terminals.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
RC3403AN	0° to $70^{\circ} \mathrm{C}$	Commercial	14 Pin Plastic DIP	RC3403AN

The information contained in this data sheet has been carefully compiled; however, it shall not by implication or otherwise become part of the terms and conditions of any subsequent sale. Raytheon's liability shall be determined solely by its standard terms and conditions of sale. No representation as to application or use or that the circuits are either licensed or free from patent infringement is intended or implied. Raytheon reserves the right to change the circuitry and any other data at any time without notice and assumes no liability for errors.

LIFE SUPPORT POLICY:

Raytheon's products are not designed for use in life support applications, wherein a failure or malfunction of the component can reasonably be expected to result in personal injury. The user of Raytheon components in life support applications assumes all risk of such use and indemnifies Raytheon Company against all damages.

Raytheon Electronics
Semiconductor Division
350 Ellis Street
Mountain View CA 94043
4159689211
FAX 4159667742

